

Specialized System Solutions Through Innovation

TRITON STORMWATER SYSTEMS

Triton Stormwater Solutions provides innovative, system-based solutions to meet the needs of clients worldwide. We deliver engineering excellence matched with superior products. By providing personalized customer service, we give contractors and developers turnkey simplicity through all phases of the project.
Call Triton today and let us give you Power Over Water!

MAIN HEADER ROW (MHR)

The heart of the Triton system is the Main Header Row'. Working as a collection point and management center for incoming stormwater runoff, the Main Header Row allows sediments to be captured onto Triton's patented Sediment Floors before passing the water into the Distribution Chamber Rows. Intelligently designed, Triton's MHR systems can work in conjunction with a variety of catch basin pre-treatment devices, where required.

The Triton Main Header Row eliminates the need for manifolds and manholes altogether, because our products are so strong they can take a direct connection into the end cap or side of the chamber.

POLLUTION CONTROL OPTIONS

The key to the system's robust pollution abatement is twofold. First, the Main Header Row will allow the sediment to settle out as the water from the inlet manhole rises upward to the connecting pipe inverts.
Then, once the water is inside the Main Header Row, the Triton-designed upward Elbow and Filter Puck system gives designers the ability to use any type of customer sourced filtration media (Zeolite, Granular Activated Carbon (GAC), Metal Zorb, etc.). This flexibility allows the user to target a wide range of common contaminants before the water is sent to the distribution chambers.

The water in the distribution (storage) chambers then leaches back through the soil to recharge aquifers just as it would in nature. If a liner is used with the system, the water can be used for landscape irrigation, toilets or wet fire suppression systems.

By adding a Puck Sceen, the download Elbow and Filter Puck System could also be used to prevent floatables from entering the storage chambers.

The image above shows three different options: Connecting pipes without the Elbows, with Elbows and Filters Pucks pointing up, and with the Elbows and Filter Pucks pointing down.

Car Dealership Maximizes Parking Area

PROJECT: Champion Chrysler, Jeep, Dodge Auto Dealership

LOCATION: Lansing, Michigan
CHALLENGE: Existing detention pond would need to be expanded to meet requirements Costing the dealership 20 parking spots.

TRITON'S SOLUTION: Replace the $185^{\prime} \times 75^{\prime}$ detention pond with an underground system that stores more water than the old pond which added 60 new parking spaces.

Fast Food Restaurant Gets Upgrade

 GAINED

PROJECT: Restaurant Remodel and
Renovation
LOCATION: St. Paul, Minnesota
CHALLENGE: New watershed requirements,
MET CITY'S STRICT
REQUIREMENTS return land previously used by detention pond.
TRITON'S SOLUTION: A high-volume
underground storage system that was placed in conjunction with ongoing street work in the area to minimize disruption. The system meets the city's strict requirements while providing almost 7,800 cubic feet of storage.

Shopping Complex Protects Local Creek

PROJECT: Keyser Shopping Complex LOCATION: Keyser, West Virginia

CHALLENGE: Preserve space, protect a local creek, store large volumes of runoff.

HANDLED STORAGE DEMANDS

TRITON'S SOLUTION: Placement of nearly 2,550 chambers under a parking lot with only 16 " of top-fill due to the tremendous strength of the chambers. The system is able to handle the demands of storage, even with the negligible change in elevation that creates large volumes of water being held for long periods of time.

Panda Express Retains Shallow Depth

PROJECT: Panda Express New Build
LOCATION: Midland, MI
CHALLENGE: Provide a stormwater system with ample storage while having to retain a very shallow depth.

M6
ACHIEVES
SHALLOW FOOTPRINT

TRITON'S SOLUTION: Using the M6 chamber
system, contractor was able to maximize storage volume keeping a shallow footprint. Triton was also able to supply the fabric and pipe, along with the chambers, to deliver the entire packaged system saving money and time.

Minnesota Bus Stop Project Runs on Time

PROJECT: Metro Transit Bus Stop Improvement
LOCATION: Brooklyn Park, Minnesota
CHALLENGE: Triangular site with an existing pond on one side and a mall on the other side with limited storage options.

TRITON'S SOLUTION: The flexibility inherent
in the Triton system allowed the triangular site to work, which gave developers the ability to tie into the existing inflow and outflow pipes.

Resort Relaxing at Ontario's Friday Harbor

PROJECT: Friday Harbor Four Season Resort
LOCATION: Lake Simcoe, Ontario
CHALLENGE: The site's elevation and an existing barrier wall made a strong, largecapacity system a must.

TRITON'S SOLUTION: An extra-long main header row was used to accommodate four pumping stations three to get water to the storage system and one to bring water to the surface when needed.

Duluth Airport Flies High

PROJECT: Duluth International Airport Upgrade
LOCATION: Duluth, Minnesota
CHEMICAL RESISTANT

MATERIAL
CHALLENGE: Extreme weather and a rocky landscape coupled with a need to protect the area's natural beauty.

TRITON'S SOLUTION: A design incorporating a hydrocarbon-capturing pretreatment system into our main header row was used to mitigate pollution, while our largecapacity S29 chambers provided the needed storage and strength at a shallow depth.

Penn DOT Gives Green Light

PROJECT: Intersection Upgrade
LOCATION: Dubois, Pennsylvania
PROTECTED
CHALLENGE: Developers needed to gather runoff from a large hospital parking lot, as well as the street intersection all while collecting sediment to protect the city's water supply.

TRITON'S SOLUTION: A large capacity storage system with a collection port to easily clean the sediment catch basins, as well as a pressure washing inlet on the opposite end of the main header row, to allow any sediments on the floor to be easily flushed or washed back down to the catch basins for collection.

Flexibility, Storage Mark 3M Path

PROJECT: 3M Community Walking Path
LOCATION: Maplewood, Minnesota
CHALLENGE: Existing structures had to be worked around, and the project team had to minimize disruption to ongoing work at the facility.

TRITON'S SOLUTION: The design flexibility of the Triton system allowed the engineers to create a system that met the storage needs without compromising existing natural features and landmarks.

Multiple Chamber Sizes for IKEA

PROJECT: IKEA Jacksonville Store
LOCATION: Jacksonville, Florida
CHALLENGE: Not only would this be the largest underground stormwater system in the
 Southeastern US, but it also had to collect water from a variety of sources to work within the seasonal high water table limitations.

TRITON'S SOLUTION: A robust, flexible system that could handle runoff from parking lots, roof lines and unimproved lands was designed. By incorporating a main header row, the Triton system could filter out sediments when needed, allowing pass through of water to storage chambers during heavy rainfall events.

Strength Speaks Volumes for Lowe's

PROJECT: Lowe's Home Improvement Centers Silverton Store

LOCATION: Silverton, Colorado
CHALLENGE: Sloping terrain and nearby water features that needed to be protected.

TRITON'S SOLUTION: A system with a main
header row allowed the inclusion of an oil-separating pre-treatment device to protect nearby waters. Used chambers strong enough to be buried 10 feet below the surface to accommodate the slope of the land.

Ease of Installation at Skate Park

PROJECT: Skateboard Park
LOCATION: Ann Arbor, Michigan
CHALLENGE: Limited space and an existing outlet pipe presented a depth restriction.

TRITON'S SOLUTION: A system with an
integrated but offset Main Header Row was chosen to help filter sediments from the water before it entered the distribution rows, while still conforming to the drainage field's unique shape.

Neighborhood Upgrade at Detroit's Brush Park

PROJECT: Community Park Stormwater
System
LOCATION: Detroit, Michigan
CHALLENGE: Limited space compounded by

MULTIPLE SYSTEMS

 contaminated soils and utility easements.TRITON'S SOLUTION: Instead of the planned
stormwater pipes, Triton created 20 individual systems that could work together to prevent infiltration of the contaminated soils, while providing 45,600 cubic feet of storage.

School Install Earns an "A" in Indiana

PROJECT: Brown Elementary School Parking Lot
LOCATION: Brownsburg, Indiana
CHALLENGE: A tight footprint combined with the need to minimize disruption to ongoing class schedules and activities.

TRITON'S SOLUTION: By using the S29
Chamber rather than the originally specified competitive product, the contractor was able to achieve greater storage capacity with a faster, easier install that also required less stone - saving time, money and hassle.

MINIMIZED DISRUPTION

Community Center for St. Cloud

PROJECT: St. Cloud Community Center
LOCATION: St. Cloud, Minnesota
CHALLENGE: The proposed site had a very small area that needed to comply with Minnesota's B-3 Guidelines for stormwater management.

TRITON'S SOLUTION: By designing the installation to utilize Triton's strength in a double-stacked configuration, engineers were able to drain three acres of impervious surface runoff into a $36^{\prime} \times 140^{\prime}$ drainfield to protect local waterways and meet state requirements.

$1^{\text {sT }}$ Global Vault Multiplex Install in Michigan

PROJECT: Studio Park Complex
LOCATION: Grand Rapids, MI
CHALLENGE: The site had an extremely narrow jobsite with a need for maximum
 STACKED EFFICIENCY

1ST
WORLDWIDE INSTALLATION storage capacity.

TRITON'S SOLUTION: The Brand New Vault
system not only provided the best stormwater storage solution, it allowed the owner of the site to save money by reducing stone backfill, cutting in half the need for stone/backfill trucks and eliminating the need for an expensive pretreatment system by customizing the system's expandable sediment forebay.

INNOVATION TIMELINE

From its founding, Triton Stormwater Solutions has been driven by a single focus: to solve problems of stormwater management through innovative engineering approaches and product development.

2004 PROBLEM

After watching uncontrolled water runoff in front of his house, Triton founder Joe Miskovich looked for ways to protect his property and nearby water features and found that no suitable options existed.

2008 PROBLEM

The S29 Chamber was not meeting the needs of customers who had to deal with high water tables, shallow footprints or other storage challenges.

2010 PROBLEM
The international market could not be easily serviced by existing chambers, because they did not fit efficiently into sea freight containers.

2015 PROBLEM

The stormwater market was turning to larger and larger chambers to achieve needed storage, which created new issues with installation in areas where stone costs are high.

COMPLETE STORMWATER SYSTEMS

MINI | Model: M-6
34 " $\mathrm{W} \times 17.5^{\prime \prime} \mathrm{H} \times 32^{\prime \prime} \mathrm{L} 12 \mathrm{lbs}$ $863.6 \mathrm{~mm} \times 44.5 \mathrm{~mm} \times 812.8 \mathrm{~mm} 6.8 \mathrm{~kg}$.
Bare Chamber Storage $5.6 \mathrm{cf}\left(.16 \mathrm{~m}^{3}\right)$ With 6 " $(160 \mathrm{~mm})$ Stone Above and Below $11.5 \mathrm{cf}\left(.326 \mathrm{~m}^{3}\right)$

COMPACT | Model: C-10
$40^{\prime \prime} \mathrm{W} \times 25^{\prime \prime} \mathrm{H} \times 32^{\prime 2} \mathrm{~L} 15 \mathrm{lbs}$ $1016 \mathrm{~mm} \times 635 \mathrm{~mm} \times 812.8 \mathrm{~mm} 6.8 \mathrm{~kg}$.
Bare Chamber Storage $9.8 \mathrm{cf}\left(.28 \mathrm{~m}^{3}\right)$ With 6" 1160 mm) Stone Above and Below $17.6 \mathrm{cf}\left(.498 \mathrm{~m}^{3}\right)$

MEGA | Model: S-22
$55^{\prime \prime} \mathrm{W} \times 35^{\prime \prime} \mathrm{H} \times 30^{\prime \prime} \mathrm{L} 28 \mathrm{lbs}$ $1397 \mathrm{~mm} \times 863.6 \mathrm{~mm} \times 762 \mathrm{~mm} 12.7 \mathrm{~kg}$
Bare Chamber Storage $23.2 \mathrm{cf}\left(.66 \mathrm{~m}^{3}\right)$ With 6 " $(150 \mathrm{~mm})$ Stone Above and Below $33.8 \mathrm{cf}\left(.96 \mathrm{~m}^{3}\right)$

ULTIMATE \| Model: S-29
$59^{\prime \prime} \mathrm{W} \times 36^{\prime \prime} \mathrm{H} \times 35^{\prime \prime} \mathrm{L} 37 \mathrm{lbs}$ $1498.6 \mathrm{~mm} \times 914.4 \mathrm{~mm} \times 889 \mathrm{~mm} 14.5 \mathrm{~kg}$.
Bare Chamber Storage $29 \mathrm{cf}\left(.82 \mathrm{~m}^{3}\right)$ With 6 " $(160 \mathrm{~mm})$ Stone Above and Below 4.1 cf $\left(1.161 \mathrm{~m}^{3}\right)$

VAULT

$4.28^{\prime \prime} W \times 36^{\prime \prime} \mathrm{H} \times 4.28^{\prime \prime} \mathrm{L} 50 \mathrm{lbs}$ $1049 \mathrm{~mm} \times 1049 \mathrm{~mm} \times 914 \mathrm{~mm} 22.7 \mathrm{~kg}$ Bare Chamber Storage $28.79 \mathrm{cf}\left(.82 \mathrm{~m}^{3}\right)$
Without Tray and $6^{\prime \prime}(150 \mathrm{~mm})$ Stone Above and Below $36.21 \mathrm{cf}\left(1.025 \mathrm{~m}^{3}\right)$
With Tray and $6^{\prime \prime}(150 \mathrm{~mm})$ Stone Above and Below $43.78 \mathrm{cf}\left(1.24 \mathrm{~m}^{3}\right)$

